В 1802 г. английский физик Уильям Хаид Волластон (1766-1828), открывший годом ранее ультрафиолетовые лучи, построил спектроскоп, в котором впереди стеклянной призмы параллельно её ребру располагалась узкая щель. Наведя прибор на Солнце, он заметил, что солнечный спектр пересекают узкие тёмные линии.
Волластон тогда не понял смысла своего открытия и не придал ему особого значения. Через 12 лет, в 1814г. немецкий физик Йозеф Фра-унгофер (1787-1826) вновь обнаружил в солнечном спектре тёмные линии, но в отличие от Волластона сумел правильно объяснить их поглощением лучей газами атмосферы Солнца. Используя явление дифракции света, он измерил длины волн наблюдаемых линий, которые получили с тех пор название фраунгоферовых.
В 1833 г. шотландский физик Дэвид Брюстер (1781-1868), известный своими исследованиями поляризации света, обратил внимание на группу полос в солнечном спектре, интенсивность которых увеличивалась по мере того, как Солнце опускалось к горизонту. Прошло почти 30 лет, прежде чем в 1862 г. выдающийся французский астрофизик Пьер Жюль Сезар Жансён (1824-1907) дал им правильное объяснение: эти полосы, получившие название теллурических (от лат. telluris - "земля"), вызваны поглощением солнечных лучей газами земной атмосферы.
К середине XIX в. физики уже довольно хорошо изучили спектры светящихся газов. Так, было установлено, что свечение паров натрия порождает яркую жёлтую линию. Однако на том же месте в спектре Солнца наблюдалась тёмная линия. Что бы это значило?
Решить этот вопрос в 1859 г. взялись выдающийся немецкий физик Густав Кирхгоф (1824-1887) и его коллега, известный химик Роберт Бун-зен (1811-1899). Сравнивая длины волн фраунгоферовых линий в спектре Солнца и линий излучения паров различных веществ, Кирхгоф и Бун-зен обнаружили на Солнце натрий, железо, магний, кальций, хром и другие металлы. Каждый раз светящимся лабораторным линиям земных газов соответствовали тёмные линии в спектре Солнца. В 1862 г. шведский физик и астроном Андрее Йонас Ангстрем (1814-1874), ещё один из основоположников спектроскопии (кстати, его именем названа единица длины, ангстрем: 1 А=Ю~10 м), обнаружил в солнечном спектре линии самого распространённого в природе элемента - водорода. В 1869 г. он же, измерив с большой точностью длины волн нескольких тысяч линий, составил первый подробный атлас спектра Солнца.
18 августа 1868 г. французский астрофизик Пьер Жансен, наблюдая полное солнечное затмение, заметил яркую жёлтую линию в спектре Солнца вблизи двойной линии натрия. Её приписали неизвестному на Земле химическому элементу гелию (от греч. "хелиос" - "солнце"). Действительно, на Земле гелий был впервые найден в газах, выделявшихся при нагревании минерала клевеита, только в 1895 г., так что он вполне оправдал своё "внеземное" название.
Успехи спектроскопии Солнца стимулировали учёных применять спектральныйанализ к изучению звёзд. Выдающаяся роль в развитии звёздной спектроскопии по праву принадлежит итальянскому астрофизику Анджело Сёкки (1818-1878). В 1863-1868 гг. он изучил спектры 4 тыс. звёзд и построил первую классификацию звёздных спектров, разделив их на четыре класса. Его классификация была принята всеми астрономами и применялась до введения в начале XX в. Гарвардской классификации. Одновременно с Уильямом Хёггинсом Секки выполнил первые спектральные наблюдения планет, причём он обнаружил в красной части спектра Юпитера широкую тёмную полосу, принадлежавшую, как выяснилось впоследствии, метану.
Немалый вклад в развитие астро-спектроскопии внёс соотечественник Секки Джованни Донати (1826-1873), имя которого обычно связывают с открытой им в 1858 г. и названной в его честь яркой и очень красивой кометой. Донати первым получил её спектр и отождествил наблюдаемые в нём полосы и линии. Он изучал спектры Солнца, звёзд, солнечных хромосферы и короны, а также полярных сияний.
Уильям Хёггинс (1824-1910) установил сходство спектров многих звёзд со спектром Солнца. Он показал, что свет испускается его раскалённой поверхностью, поглощаясь после этого газами солнечной атмосферы. Стало ясно, почему линии элементов в спектре Солнца и звёзд, как правило, тёмные, а не яркие. Хёггинс впервые получил и исследовал спектры газовых туманностей, состоящие из отдельных линий излучения. Это и доказало, что они газовые.
Хёггинс впервые изучил спектр новой звезды, а именно новой Северной Короны, вспыхнувшей в 1866 г., и обнаружил существование вокруг звезды расширяющейся газовой оболочки. Одним из первых он использовал для определения скоростей звёзд по лучу зрения принцип Доплера - Физо (его часто называют эффектом Доплера).
Незадолго до этого, в 1842 г., австрийский физик Кристиан Доплер (1803-1853) теоретически доказал, что частота звуковых и световых колебаний, воспринимаемых наблюдателем, зависит от скорости приближения или удаления их источника. Высота тона гудка локомотива, например, резко меняется (в сторону понижения), когда приближающийся поезд проезжает мимо нас и начинает удаляться.
Выдающийся французский физик Арман Ипполит Луи Физо (1819- 1896) в 1848 г. проверил это явление для лучей света в лаборатории. Он же предложил использовать его для определения скоростей звёзд по лучу зрения, так называемых лучевых скоростей, - по смещению спектральных линий к фиолетовому концу спектра (в случае приближения источника) или к красному (в случае его удаления). В 1868 г. Хёггинс таким способом измерил лучевую скорость Сириуса. Оказалось, что он приближается к Земле со скоростью примерно 8 км/с.
Последовательное применение принципа Доплера - Физо в астрономии привело к ряду замечательных открытий. В 1889 г. директор Гарвардской обсерватории (США) Эдуард Чарлз Пикеринг (1846-1919) обнаружил раздвоение линий в спектре Ми-цара - всем известной звезды 2-й звёздной величины в хвосте Большой Медведицы. Линии с определённым периодом то сдвигались, то раздвигались. Пикеринг понял, что это скорее всего тесная двойная система: её звёзды настолько близки друг к другу, что их нельзя различить ни в один телескоп. Однако спектральныйанализ позволяет это сделать. Поскольку скорости обеих звёзд пары направлены в разные стороны, их можно определить, используя принцип Доплера - Физо (а также, конечно, и период обращения звёзд в системе).
В 1900 г. пулковский астроном Аристарх Аполлонович Белополь-ский (1854-1934) использовал этот принцип для определения скоростей и периодов вращения планет. Если поставить щель спектрографа вдоль экватора планеты, спектральные линии получат наклон (один край планеты к нам приближается, а другой - удаляется). Приложив этот метод к кольцам Сатурна, Белопольский доказал, что участки кольца обращаются вокруг планеты по законам Кеплера, а значит, состоят из множества отдельных, не связанных между собой мелких частиц, как это предполагали, исходя из теоретических соображений, Джеймс Клерк Максвелл (1831- 1879) и Софья Васильевна Ковалевская (1850-1891).
Одновременно с Белопольским такой же результат получили американский астроном Джеймс Эдуард Кйлер (1857-1900) и французский астроном Анри Деландр (1853-1948).
Примерно за год до этих исследований Белопольский обнаружил периодическое изменение лучевых скоростей у цефеид. Тогда же московский физик Николай Алексеевич Умов (1846-1915) высказал опередившую своё время мысль, что в данном случае учёные имеют дело не с двойной системой, как тогда полагали, а с пульсацией звезды.
Между тем астроспектроскопия делала всё новые и новые успехи. В 1890 г. Гарвардская астрономическая обсерватория выпустила большой каталог звёздных спектров, содержавший 10 350 звёзд до 8-й звёздной величины и до 25? южного склонения. Он был посвящён памяти Генри Дрэ-пера (1837-1882), американского любителя астрономии (по специальности врача), пионера широкого применения фотографии в астрономии. В 1872 г. он получил первую фотографию спектра звезды (спектрограмму), а в дальнейшем - спектры ярких звёзд, Луны, планет, комет и туманностей. После выхода первого тома каталога к нему не раз издавались дополнения. Общее число изученных спектров звёзд достигло 350 тыс.
Большинство начинающих предпринимателей задумываются, как самостоятельно открыть ООО, какие документы могут понадобиться при регистрации, куда подать документы для регистрации, что нужно после регистрации ООО и как избежать ошибок