Российская Информационная Сеть
Астрономия и Космос Небесные тела Звёзды
 

Из чего состоят звезды?

 
Звёзды

Фундаментом теории звездообразования являются данные о межзвездной среде. Три столетия назад Исаак Ньютон в письме к Ричарду Бентли высказал мысль о том, что звезды и планеты под действием силы гравитации "сгустились" из разреженного вещества, заполнявшего некогда Вселенную. С той поры эта мысль уверенно прокладывала себе дорогу, опираясь на наблюдательные данные о межзвездном веществе. Как выяснилось, оно и сейчас, в нашу эпоху в виде разреженного газа и пыли заполняет пространство между звездами. В разных областях Галактики межзвездный газ существенно различается по своим физическим параметрам, в определенных пределах меняется и его химический состав.

Однако для плодотворных исследований ученым всегда требуется упрощенная рабочая модель объекта. Лет 20 назад межзвездную среду представляли в виде горячего газа (с температурой Т = 104 K), в котором плавают холодные облака (Т = 102 К). Эта двухкомпонентная модель позволила объяснить многие явления, но к середине 70-х годов под напором новых фактов ее пришлось уточнить: внеатмосферные ультрафиолетовые наблюдения указали на существование очень горячего газа (Т = 106 К), заполняющего большую часть объема Галактики, а наземные радионаблюдения открыли нам очень холодный молекулярный газ (Т = 10 К), собранный в массивные облака вблизи галактической плоскости.

Теперь принято представлять межзвездный газ как четырехфазную среду (таблица), хотя и такая модель не исчерпывает всего многообразия физических условий в межзвездном пространстве. Например, в этой модели не представлены расширяющиеся остатки вспышек Сверхновых (Т = 108), планетарные туманности и некоторые другие газовые образования, не находящиеся в равновесии по давлению с основными четырьмя фазами межзвездного газа. Действительно, их объем и масса в каждый момент времени не существенны по сравнению с уже имеющимся в Галактике газом. Однако именно они поддерживают баланс вещества и энергии в этом постоянно остывающем и сгущающемся в звезды газе.

Химический состав межзвездного газа примерно такой же, как у Солнца и у большинства наблюдаемых звезд: на 10 атомов водорода (Н) приходится 1 атом гелия (Не) и незначительное количество других, более тяжелых элементов; среди них больше всего кислорода (О), углерода (C) и азота (N). В зависимости от температуры и плотности газа его атомы находятся "в нейтральном или ионизованном состоянии, входят в состав молекул или твердых конгломератов - пылинок.

Вообще говоря, для каждого химического элемента существует свой диапазон условий, при которых он находится в том или ином состоянии ионизации. Но поскольку подавляющее большинство атомов принадлежит водороду, его свойства и определяют состояние межзвездного газа в целом: горячая и теплая фазы являются областями ионизованного водорода (их называют области или зоны НII), прохладная фаза содержит преимущественно нейтральные атомы водорода (облака НI), а холодная фаза состоит в основном из молекулярного водорода (Н2), который образуется, как правило, во внутренних плотных частях облаков НI.

Молекулы водорода были впервые выявлены в межзвёздной среде в 1970 г. по ультрафиолетовым линиям поглощения в спектрах горячих звезд. В том же году в межзвездном пространстве были найдены молекулы угарного газа (СО) по их радиоизлучению с длиной волны l = 2,6 мм. Эти две молекулы наиболее распространены в космосе, причем молекул Н2 в несколько тысяч раз больше, чем молекул СО.

Познакомимся с молекулой водорода, поскольку это главный строительный материал, из которого формируются звезды. Когда два атома водорода подходят близко друг к другу, их электронные оболочки резко перестраиваются: каждый из электронов начинает двигаться вокруг двух протонов, связывая их между собой наподобие электрического "клея". В космических условиях объединение атомов водорода в молекулы происходит, скорее всего, на поверхности пылинок, которые играют роль своеобразного катализатора этой реакции.

Молекула водорода обладает не очень большой прочностью: для ее разрушения (диссоциации) нужна энергия 4,5 эВ или больше. Такую энергию имеют кванты с длиной волны короче чем 275,6 нм. Подобных ультрафиолетовых квантов в Галактике много - их излучают все горячие звезды. Однако сама молекула Н2 поглощает эти кванты крайне неохотно. Обычно разрушение молекул Н2 происходит следующим образом. Квант с энергией 11,2 эВ (l = 101.6 нм) переводит один из электронов молекулы в возбужденное состояние. Обратный переход в основное состояние, как правило, сопровождается излучением таого же кванта, но иногда квант не излучается, а энергия расходуется на возбуждение колебаний молекулы, которые заканчиваются ее распадом.

Как известно, жесткие ультрафиолетовые кванты с энергией более 13,6 эВ ионизуют атомы водорода и поэтому полностью поглощаются межзвездной средой в непосредственной близости от горячих звезд. Более мягкие кванты, в том числе и с энергией 11,2 эВ, почти беспрепятственно распространяются в Галактике и разрушают молекулярный водород везде, где он для них доступен. Единственное место, где молекула Н2 может жить сравнительно долго, - это недра плотных газопылевых облаков, куда ультрафиолетовые кванты не могут пробиться сквозь плотную пылевую завесу. Но к сожалению, по этой же причине молекулярный водород становится практически недоступным для наблюдения.

Комбинация первого возбужденного электронного состояния молекулы Н2 с различными ее квантовыми переходами дает набор спектральных линий в диапазоне длин волн 99,1-113,2 нм. Когда свет горячей звезды проходит сквозь полупрозрачное облако или сквозь наружные разреженные слои гигантских плотных облаков, в его спектре образуются соответствующие линии поглощения молекулы Н2. Они-то и были зафиксированы в 70-х годах с помощью космических телескопов в спектрах полутора сотен близких звезд.

Однако сообщить нам сколько-нибудь полные сведения о распределении молекулярного водорода в Галактике ультрафиолетовое излучение не может. Ему не дробиться в недра массивных облаков, где как раз и находится главное хранилище холодного газа -непосредственного предка молодых звезд. Поэтому распределение молекул На в нашей и в других галактиках изучают пока косвенными методами: по распределению других молекул, имеющих спектральные линии, удобные для наблюдения. Самая популярная в этом отношении молекула угарного газа, она же окись углерода, т. е. СО.

Ее энергия диссоциации 11,1 эВ, поэтому она может существовать там же, где молекулярный водород. Сталкиваясь с другими атомами и молекулами, молекулы СО возбуждаются и затем излучают линии так называемых вращательных переходов. Наиболее длинноволновая из них (l = 2,6 мм) легко наблюдается во многих областях Галактики: светимость некоторых молекулярных облаков в линии СО достигает нескольких светимостей Солнца (Lc = 4*1033 эрг/с).

Радионаблюдения в линиях СО и некоторых других.молекул (HCN, ОН, CN) позволяют охватить все облако в целом, все его области с разнообразными физическими условиями. Наблюдения же нескольких линий одной молекулы дают возможность определить в каждой области температуру и плотность газа. Однако переход от наблюдаемой интенсивности в линии излучения какой-либо молекулы (даже такой распространенной, как СО) к полной концентрации, а следовательно, и массе газа таит в себе значительную неопределенность. Приходится делать предположения о химическом составе облаков, о доле атомов, "погребенных" в пылинках, и т. п. Точное значение коэффициента перехода от интенсивности линии СО к количеству молекул Н2 до сих пор бурно обсуждается. Разные исследователи используют значение этого коэффициента, различающееся в 2-3 раза.

Соответственно и содержание молекулярного газа в Галактике известно с такой же, если не с худшей, точностью. Особенно сложно определить содержание молекулярного газа вдали от Солнца, например в окрестности центра Галактики. Поскольку звездообразование там происходит более интенсивно, чем у нас, на периферии Галактики, межзвездная среда там сильнее обогащена тяжелыми элементами - продуктами термоядерного синтеза. Точно пока нельзя сказать, но, если принять во внимание изменение химического состава вдоль радиуса галактического диска, содержание элементов группы CNO в ядре Галактики должно быть раза в 3 выше, чем в окрестности Солнца.

Если это действительно так, то соответственно в 3 раза ниже следует брать коэффициент перехода СО - Н2. Эти и другие неопределенности приводят к тому. что масса молекулярного газа во внутренней области Галактики (R <10 кпк) оценивается различными исследователями от 5*108 до 3*109 Мс

Простудиться можно от пищи! Простудиться можно от пищи!
Простуда в нашем понимание что такое? Это заложенный нос или, наоборот, текущий нос, першение в горле, кашель
Уныние - враг, от которого необходимо избавиться Уныние - враг, от которого необходимо избавиться
Уныние - неестественное состояние человека, которое не только отнимает силы, но еще и со временем приводит к депрессивному состоянию
Парфюмер Франсис Куркджян создал новые уникальные духи Парфюмер Франсис Куркджян создал новые уникальные духи
Известный парфюмер Франсис Куркджян, прославившийся созданием эксклюзивных ароматов сотворил новые уникальные духи MCY 105, которые были выпущены в считанных экземплярах

Астрономия и космос
Новости астрономии
История Астрономии
Астрономия сегодня
Небесные тела
Солнечная система
Законы космоса
Звёздные карты и календари
Знаменитые астрономы
Вселенная
Астрогалерея
Организации
Гостевая книга
Поделись опытом!!!
Астрономический словарь
Библиотека астронома
Поиск по сайту

По материалам: Гол-красавец Роббена.
Copyright © RIN 2003 -    
   Обратная связь    
Российская Информационная Сеть